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Checkerboard superconducting order and antinodal Bogoliubov quasiparticle interference
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Numerical study of momentum-dependent gap function is presented to make clear the origin of supercon-
ductivity in copper oxides. We claim that antinodal region with pronounced nesting feature of the Fermi
contour gives rise to superconducting pairing with large momentum under screened Coulomb repulsion. Such
a pairing results in both spatial checkerboard pattern of the superconducting state below 7. and a gapped state
of incoherent pairs in a broad temperature range above 7. We explain the momentum dependence of the
coherent spectral weight detected in angle-resolved photoemission spectroscopy and predict antinodal Bogo-
liubov quasiparticle interference other than observed in the nodal region.
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I. INTRODUCTION

Angle-resolved photoemission spectroscopy (ARPES) of
underdoped cuprates at temperatures exceeding conditional
upper boundary 7™ of the pseudogap (PG) state evidences in
favor to large simply connected Fermi contour (FC) typical
of the conventional Fermi liquid. However, below T%, the FC
is seen as transformed into disconnected arcs disposed in the
nodal regions. Cooling from 7% down to superconducting
(SC) transition temperature T, results in a decrease in arc
length down to zero. Thus, the FC degenerates into four
points that give rise to the nodes of d-wave SC order param-
eter arising below T,. It seems fairly natural to conclude that,
within the framework of d-wave pairing concept, the SC or-
der parameter has its maximal value exactly in the antinodal
directions.!

For this reason, it might seem quite probable that low-
temperature properties of d-wave superconductor should be
determined by low-energy quasiparticle excitations only in
the nodal region of the momentum space that is in vicinities
of the SC gap nodes on the diagonals of the Brillouin zone.
Taking into account that Bogoliubov quasiparticle interfer-
ence (QPI), observed in the nodal region, disappears near the
end points of the FC arcs,” one might lead to a conclusion
that only the nodal region gives rise to superconductivity
whereas the gap observed in the antinodal region should be
attributed to an incoherent PG state.? However, a coherence
in the antinodal region becomes apparent both in the ARPES
study® and also in the Andreev-Saint James experiments.*
Therefore, in spite of the fact that high-energy QPI is not
detected for the present, one can believe that the antinodal
region should contribute a coherent state as well.

We have argued’ that both PG and SC states arise exactly
in the antinodal region with pronounced nesting of the FC as
spatially inhomogeneous incoherent and coherent states of
pairs with large momentum, respectively. The nodal region
gives rise to conventional SC pairing with zero momentum
which, together with the pairing with large momentum (K
pairing) in the antinodal region, forms a biordered SC state
in the whole of the Brillouin zone.

Kinematic constraint, inherent in K pairing in the antin-
odal region, can result in oscillating real-space pairing inter-
action. Indeed, momenta of both particles composing SC pair

1098-0121/2009/80(21)/214524(9)

214524-1

PACS number(s): 74.20.—z, 74.72.—h

with nonzero total momentum K should be either inside or
outside of the FC. For this reason, a set of one-particle states
turns out to be kinematically excluded because of the fact
that such states cannot contribute into the states of K pairs. It
means that any scattering between such excluded states
should be forbidden when one defines the interaction leading
to a rise of a bound state of K pair. An exclusion of a set of
the Fourier components from the screened Coulomb interac-
tion results in the fact that corresponding real-space
K-pairing interaction exhibits an oscillation outside of small-
distance repulsive core as shown schematically in Fig. 1. It
should be noted that there is an analogy between this oscil-
lation and well-known Friedel oscillation that arises owing to
Kohn singularity of screening enhanced by nesting of the
FC.

Besides the fact that two-particle problem with oscillating
potential leads to a bound state of the relative motion of K
pair,® it can also produce a quasistationary state (QSS) (Ref.
7) similar to the Gamov’s state of alpha-radioactive nucleus.’
SC gap function Agc(k), depending on relative-motion mo-
mentum k of K pair, as a solution to the mean-field self-
consistency equation, arises as a result of the instability of
the ground state of the normal Fermi liquid with respect to a
rise of K pairs in the bound state. This function can be ex-
pressed in terms of Gorkov’s anomalous averages describing
SC condensate of K pairs. Due to a phase coherence of the
SC ground state, these averages become nonzero below T..

0]

o

e

FIG. 1. Real-space pairing potential U(r) (schematically). Ener-
gies E; and E, correspond to bound and quasistationary states, re-
spectively. Barrier height E, corresponds to a break of the pair
without tunneling through the barrier.
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QSS with positive energy, following from the two-particle
problem, can be considered as an evidence in favor to one
more instability of the Fermi liquid. We associate such an
instability with incoherent K pairs existing above T.. It
means that Gorkov’s anomalous averages and corresponding
gap function Apg(k) vanish under averaging over phases of
K pairs but mean square gap function remains nonzero up to
T* according to the hypothesis advanced by Emery and
Kivelson.’

Thus, one can conclude that, in the temperature range
from T down to T,, K pairs form incoherent PG state as
off-diagonal short-range order (ODSRO). Off-diagonal long-
range order (ODLRO) arises as SC condensate of coherent K
pairs below T,.. Both ODLRO and ODSRO states can be
described in terms of Gorkov’s Green’s functions.'” A phe-
nomenological Bardeen-Cooper-Schrieffer (BCS)-type form
of the coherent contribution to the normal Gorkov’s function
can be written as

1} (k) u? (k)
w—E(k)+iF+ w+E(k) —il’

where E(k) and 2u? (k)=1= &k)/E(k) are quasiparticle en-
ergy and coherence factors, respectively,

28k)=e(K2+k)+e(K/2-k) (1)

G(w;k) =z(k)

is the kinetic energy of the K pair of particles with momenta
K/2 =k, e(k) is electron dispersion with respect to chemical
potential u and z(k) is the quasiparticle weight. Two terms in
G(w;k) can be referred to K pairs above and below the FC,
respectively. Diagonal Green’s function G(w;k) describes
ODSRO state corresponding to the existence of noncoherent
QSS of K pairs above T.. Transition from the bound paired
state into long-living QSS corresponds to small but finite
decay I'=T'(w;k) whereas transitions into stationary states
above barrier energy E,, (Fig. 1) should be associated with an
infinitesimal decay, y— +0, leading to conventional Fermi-
liquid behavior of G(w;k) above T. Thus, a rise of QSS
results in a non-Fermi-liquid behavior of G(w;k) that can be
related to the PG state.

The SC state below T, should be described by both nor-
mal and anomalous Gorkov’s functions. Taking into account
the fact that PG function Apg(k), averaged over random
phases, vanishes whereas Agc(k) # 0 below T, one can in-
troduce anomalous Gorkov’s function F*(w;k) in a way we
use to obtain G(w;k),

Agc(k)
[w—Ek)+il[w+Ek)-il']

Ff(w;k) =—z(k)

Such an approach directly leads to uniform description of
both SC and PG states in underdoped cuprates. One can see
that repulsive Coulomb pairing in the antinodal region nec-
essarily results in rather complicated momentum dependence
of the SC gap and PG functions, Agc(k) and Apg(k), with
energy scale gy~ 1 eV of their domains of definition!' in
contrast to considerably less scale of about Debye energy ¢,
that arises in the case of phonon-mediated SC pairing. It is
very likely that the high-energy problem,'? arising, in par-
ticular, in the optical conductivity of the cuprates,'®> might be
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associated with high-energy scale of the antinodal K pairing.
We believe that K pairs are the main players in the high-
temperature superconductivity of the cuprates.

Recently, Tsvelik and Chubukov!'# considered SC pairing
on mutually orthogonal pairs of perfectly nested segments of
the FC in semiphenomenological way. They presuppose that
one-dimensional SC order arises only on these segments
coupled with a momentum-space Josephson links to give rise
to two-dimensional superconductivity. Actually, it is implic-
itly supposed that such SC state can arise owing to SC pair-
ing with nonzero momentum. Also, it is supposed that SC
order with the same momentum is induced on the rest un-
nested part of the FC by the order on the nested segments
due to a proximity effect in the momentum space® so that this
induced order cannot penetrate deep into the nodal region. It
should be emphasize that such a model'* differs essentially
from the biordered SC state.’

In this paper, we study the mean-field K-pairing problem
numerically to fall outside the weak-coupling limits em-
ployed in our previous approach to the K-pairing problem.>~’
We show that the SC gap function with a nontrivial nodal
line corresponds to a checkerboard pair density wave (PDW)
SC state and results in fairly natural explanation of the angle
dependence of a partial suppression of the coherent spectral
weight in the antinodal region observed by Kondo et al.> We
believe that QPI, other than observed in the nodal region,2
could be detected in the antinodal one as well. We also show
that K pairing can originate spatial checkerboard pattern
without any driving insulating order in contrast to a scenario
of a rise of PDW coexisting with a charge-density wave
(CDW).13

II. K-PAIRING PROBLEM

In the case of K pairing, the gap function is defined as

Alk)=2, Ulk,k"){Ckip—k | Craek'1) (2)
k’

where U(k,k’) is screened Coulomb interaction matrix ele-
ment, operator ¢, annihilates electron with momentum k
and spin polarization o. Anomalous average in Eq. (2), de-
scribing SC condensate of K pairs, becomes nonzero below
T,.. The gap function should be a nontrivial solution to the
self-consistency equation,

1 Uk,k")A(k") ,
Alk) =- =2 —————[1-n(k)]. 3)
25 k) + MK
Here, n(k)=(e?®'T+1)7 is a quasiparticle occupation num-
ber and quasiparticle energy has the form

E(k) = n(k) = VE(K) + A*(k), (4)

2n(k)=e(K/2 +k) - e(K/2-k). (5)

It should be noted that, since &(—k)=&(k) owing to the time-
reversal symmetry of the dispersion relation, quasiparticle
spectrum, Eq. (4), turns out to be gapped on the whole of the
FC in the case of pairing with zero total momentum. In the
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case of K pairing, it can be gapped only on those parts of the
FC where |7(k)| proves to be small enough. In addition, the
quasiparticle spectrum becomes asymmetrical with respect to
M.

Summation in Egs. (2) and (3) should be performed over
all momenta of the relative motion which can form pairs
with given total momentum K. One can see that these mo-
menta belong to a K-dependent domain of the momentum
space (domain of kinematic constraint) because of the fact
that the momenta of both particles composing SC pair with
given total momentum should be situated either inside or
outside of the FC. This means that some part of the momen-
tum space turns out to be excluded from the sums in Egs. (2)
and (3).

Since the kinetic energies of both particles composing SC
pair with K=0 can be equal to u, the low-energy limit in the
sum, Eq. (3), corresponds to £=0 whereas the upper limit is
formally restricted by a half width of the conduction band of
the order of u. However, in the BCS theory,'® such upper
limit (Debye phonon energy &) appears as an energy scale
of a layer enveloping the FC where electron-electron scatter-
ing results in an effective attraction between electrons. As a
result, pairing interaction energy U(k,k’) in Eq. (3) can be
qualitatively associated with an effective coupling constant
V* that can be estimated as'’

U

VisVo——
1+ Ug In(w/ep)

(6)
where g is density of states per spin, V is a pairing constant
due to electron-phonon interaction defined inside the layer,
and U is average Coulomb energy. Thus, in the effective
pairing constant, Coulomb repulsion appears with a logarith-
mic weakening. In the case when V*g<1, the mean-field
approach results in a conventional BCS energy gap,

A =2gp exp(-1/V'g), (7)

that appears in consequence of the logarithmic singularity of
the right-hand side of Eq. (3). This singularity is primarily
formed in an energy range near the low-energy limit, there-
fore, extension of this range might lead to a progressive ac-
cumulation of the singularity along with the formation of a
nonsingular (regular) contribution into Eq. (3). One can treat
the pre-exponential in Eq. (7) as a characteristic energy scale
beyond which the nontrivial solution to the self-consistency
equation becomes weakly sensitive to the upper limit.

All these speculations can be referred to the K-pairing
problem. However, in such a case, the logarithmic singularity
becomes apparent if and only if kinetic energy of K pair
vanishes not at isolated points, as it were most likely in the
case of arbitrary FC, but on finite pieces of the FC on which
mirror nesting condition,

e(K/2+k)—-e(K/2-k)=0, (8)

should be fulfilled at given K. One can see that, for a suitable
K, this condition can be fulfilled in the case of rectilinear
parallel segments on the opposite sides of the FC. It is obvi-
ous that K should be directed along these segments.
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FIG. 2. Near nested FC (solid line) corresponding to electron
dispersion Eq. (9) typical of the cuprates. Dashed lines represent
isolines close to the FC, numbers near the isolines are electron
energies according to Eq. (9) with ¢=0.5, #'=-0.15, and
t"=0.07 eV. Here, K is total momentum of K pair, Q is nesting
momentum. Length L of near rectilinear segment of the FC is
shown at given mean-square energy deviation & (the width of the
shadowed strip) of the FC from the rectilinearity.

FC, typical of the cuprates and isolines close to it can be
described satisfactorily by electron dispersion

g(ky,k,) =ty —2t(cos k. + cos k,) — 41" cos k, cos k,
—2¢"(cos 2k, + cos 2k,) 9)

with fitting parameters 7,=2 eV, t=0.5 eV, t'/t=-0.3, and
1"=0.14. Here, k, and k, (in units of m/a; a is interatomic
distance) are momentum components corresponding to the
antinodal directions.

One can choose one of the coordinate axes (ky) along K
directed parallel to antinodal near rectilinear segments of the
FC as shown in Fig. 2. Then, with preassigned accuracy 9,
&(k)= 6 if k, corresponds to near rectilinear segment of the
FC. Therefore, the singular contribution into Eq. (3) turns out
to be proportional to the length L of such a segment. Sum-
mation over the other component (k,) leads to an accumula-
tion of the singularity, however, in contrast to the case
K=0, a gradual deviation from the FC results in a progres-
sive increase in the difference between the kinetic energies of
the particles composing K pair. This leads to increasing de-
viation from mirror nesting condition (8), so that, finally, the
accumulation turns out to be completed when k, attains a
value corresponding to energy scale €y much lesser than w. It
should be noted that, in the case of K pairing, &, appears as
generic energy scale originating from mirror nesting feature
of electron dispersion. This scale should be related to a pre-
exponential of the gap function in the case of small effective
coupling constant. Thus, one can conclude that the nontrivial
solution to the self-consistency equation should be weakly
sensitive to the part of the momentum space corresponding
to e >g.
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Since equality, Eq. (8), is fulfilled only approximately,
one can choose length L in order that mean-square deviation
of the FC from the rectilinearity were less than a preassigned
value corresponding to energy scale o. Strictly speaking,
nonzero & eliminates the singularity because of a rise of a
lower limit cutoff in the sum Eq. (3). Similar cutoff appears
in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) problem of
SC pairing with small total pair momentum.'®!® Therefore,
nontrivial solution to Eq. (3) can exist if the effective cou-
pling constant exceeds certain é-dependent value. Magnitude
A’ of the gap function can be roughly estimated as

A'=VA(A-26), (10)

where A is the magnitude corresponding to perfect mirror
nesting, that is, to exactly rectilinear segment of the FC with
length L. Positive function A’(5) has a maximum at certain
6=6,,<A/2.Indeed, A’ —0 if 5— 0 (then, generally speak-
ing, L—0, so that there is no singularity in the self-
consistency equation: A—0). At 26> A, the magnitude of
the gap function vanishes, therefore, a maximum value of A’
exists at 0<<,,<<A/2. A choice of length L of near rectilin-
ear segment of the FC at given & predetermines total pair
momentum K. It is clear that, because of kinematic con-
straint, the absolute value of K coincides with L/2, as one
can see from Fig. 2. Since maximum value of A’ corre-
sponds to §,,, the absolute value of the momentum of K pairs
in the SC condensate should be taken as K=L(45,,)/2. Varia-
tion in the FC with doping x in hole-doped cuprates?® results
in a conclusion that K should be dependent on x. Note that
there is no contradiction between such a dependence, follow-
ing from dispersion, Eq. (9), and doping dependence of spa-
tial periodicity of checkerboard PDW seen in tunnel data.?!

Comparatively small vicinity with energy scale g, of the
strip with length L(§8,,)/2 and width corresponding to energy
scale §,, can be considered as the region of the momentum
space that primarily forms the singularity of the self-
consistency equation. Following Ref. 10, one can renormal-
ize the kernel of this equation and reduce Eq. (3) to a sum
over momenta belonging to such a vicinity only. Renormal-
ized kernel, defined in this vicinity, can be written as??

Wik =S, G E)

11
n )\n+gln(/-l’/80) ( )

and can be treated as a pairing pseudopotential correspond-
ing to oscillating real-space pairing interaction. Here, ¢, (k)
and \,, are eigenfunctions and eigenvalues of kernel U(k k'),
respectively.® We believe that the vicinities with energy scale
g, of the antinodal near rectilinear segments of the FC in-
clude electron states that mainly contribute to scattering re-
sulting in K pairing.

Since characteristic sizes of the vicinity are much less
than characteristic Fermi momentum, region of attraction in
the real space proves to be more deep and extended with
respect to that due to Friedel oscillation. Such oscillating
interaction can provide both bound state and QSS of the
relative motion of K pair. In the mean-field approach, the
bound state appears in temperature range 0 =7<T, as non-
zero anomalous averages, (Cxj—x|Ckn+k1) # 0, that determine
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FIG. 3. Calculated momentum dependence of the antinodal gap
function (gradation of gray, in meV) shown in a region of the Bril-
louin zone that primarily forms the singularity of the self-
consistency equation. White curves represent the nodal line struc-
ture of the gap function, dashed line is the FC corresponding to that
shown in Fig. 2. White regions, in which the nontrivial solution is
absent due to the kinematic constraint, appear under shifting of the
FC at £K/2 along k, (inside these regions, there are no one-particle
states that could form a pair with total momentum K=0.27/a) cor-
responding to a maximum magnitude of the gap function.

gap function Eq. (2). It should be noted that, in the case of
small K (for example, in the FFLO state), real-space oscilla-
tion of the pairing interaction becomes weak enough because
of considerable extension of the corresponding vicinity form-
ing the singular contribution into the self-consistency equa-
tion.

To study K-pairing problem numerically, we use a step-
wise approximation of the pairing interaction'! assuming that
pseudopotential, Eq. (11), has a constant value of about 10
eV inside a vicinity of near rectilinear segments of the FC.
Energy scale of such a vicinity is determined from the above-
mentioned condition that calculated gap function magnitude
should become actually independent of this scale beginning
with certain g.

Numerical study of Eq. (3) at T=0 reveals highly compli-
cated momentum dependence of gap function A(k), shown in
Fig. 3, with a few closed nodal lines crossing the FC. Topo-
logical feature of the gap function, shown only inside the
part of the Brillouin zone that primarily contributes into the
singularity of the self-consistency equation, turns out to be
weakly dependent on small variation in the parameters of
electron dispersion and magnitude of pairing interaction. Ac-
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cording to rough estimation following from Eq. (10), maxi-
mum value of K-dependent magnitude of the gap function
can be associated with K close to 0.277/a. Domain of defini-
tion of the pairing pseudopotential includes all energies
e <gg, where g is relative to a distance between the FC and
the boundary of this domain. As follows from numerical so-
lution to Eq. (3), a gradual decrease in the momentum cor-
responding to upper limit k, in the sum over k, in the self-
consistency equation with renormalized kernel, at first, does
not affect the magnitude of the gap function. Then, beginning
with certain value of k,, that can be associated with a bound-
ary of the domain of definition of W(k,k'), the magnitude
tends to zero with a decrease in k,. This gives a possibility to
determine energy scale £y=~0.3 eV of this domain forming
the singularity of the self-consistency equation.

III. CHECKERBOARD ODLRO

Visualization of a checkerboard PDW (Ref. 21) can be
considered as an indirect evidence in favor of the fact that
such a state originates from nesting feature of the FC typical
of the cuprates. It should be noted that near rectilinear seg-
ments on the opposite sides of such FC ensure not only mir-
ror nesting condition (8) but also nesting condition

ek+Q)+ek)=0 (12)

at certain nesting momentum @ which, in general, is incom-
mensurate with total momentum K of SC pair as shown in
Fig. 2. Under condition (12), the logarithmic singularity can
arise in an insulating pairing channel that gives rise, for ex-
ample, to CDW. Such an insulating pairing can compete or
coexist with K pairing in a way considered a long time ago in
the case of the coexistence of conventional (K=0) SC state
and CDW.>*

One can compare efficiencies of both channels with the
help of a crude estimation of lengths Lg and L, of near
rectilinear segments forming singularities in the SC and in-
sulating channels, respectively. These lengths, at given &, the
same in both channels, can be found from inequalities

le(K/2 +k) — e(K/2—k)| < &,

le(k + Q) +&(k)| = &, (13)

selecting the regions in the momentum space in which mirror
nesting or nesting condition, respectively, is satisfied with
preassigned accuracy. If boundaries of these regions intersect
the FC, lengths Ly and L, should be defined as distances
between the corresponding intersection points. Both pair mo-
mentum K and nesting momentum Q should be selected in a
way to ensure maximum values of corresponding lengths Ly
and L, respectively. Momenta K and Q depend on a form of
the FC varying with doping. Therefore, interrelation between
Lk and L varies with doping as well. Calculated variations
in Lg and L, with doping are shown schematically in Fig. 4.
A comparison of L and L, shows that, in the case of electron
dispersion Eq. (9), nesting dominates mirror nesting in
electron-doped compounds. On the contrary, the opposite
case of hole doping gives an opportunity of a rise of such a
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FIG. 4. Competition between nesting and mirror nesting: doping
dependence of lengths L, and L of the optimal near rectilinear
segments of the FC under nesting and mirror nesting conditions,
respectively.

range of x where mirror nesting dominates nesting.

In this range, SC order arises due to K pairing whereas
insulating order (CDW with Q=2K) with low spectral
weight can exist as induced by the corresponding PDW and,
therefore, turns out to be hardly detected. Conversely, domi-
nating insulating order in the form of CDW can induce the
PDW (Ref. 23) as a modulated superfluid density which, due
to low spectral weight, seems to be undetectable. Thus, one
can conclude that, if mirror nesting dominates nesting, SC
state in the form of PDW of K pairs can exist without any
driving insulating order.

It should be emphasized that nesting feature of the FC can
lead to a giant enhancement of the singularity in both pairing
channels.’*? In the insulating channel, nesting of the FC
transforms weak Kohn anomaly into the CDW. In the SC
channel, mirror nesting gives rise to K pairing which, owing
to kinematic constraint, ensures extended and deep oscilla-
tion of real-space screened Coulomb pairing interaction and,
consequently, results in 7, considerably greater than follow-
ing from Kohn-Luttinger SC pairing?® with K=0 and angular
momentum [# 0. Thus, K pairing leads to an independent
order so that, in such a case, there is no need to take into
account a coexistence of SC and insulating ordered states'’
to invoke spatially inhomogeneous SC state in the form of
PDW.

One can define anomalous averages (t,Abl(r’)Q/T(r)) in the
real space that corresponds to the momentum-space anoma-
lous averages, (Cx/o—k|Ck/2+k1)- arising due to K pairing. Here,

fermion field operator zAp(,(r) annihilates electron with spin
polarization o and radius vector r. Nonzero anomalous aver-
ages can be considered as an order parameter corresponding
to K pairing. In the case of the two-dimensional C, orbital
symmetry, there are four crystal equivalent pair momenta K;,
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j=1,2,3,4. Therefore, real-space representation of the order
parameter should be written as a superposition

4
(")) = 2 viei(p)exp(KR), (14)
Jj=1

where R=(r+r')/2, p=r—r' are center of mass and relative
motion radius vectors of K pair,

1 . . .
®(p) = X,E <CKj/2—kLCK,./2+kT>exp(lkp) (15)
- .

can be considered as a real-space wave function of the rela-
tive motion of K pair. Here, NV is a number of unit cells of the
two-dimensional system, summation over k should be per-
formed inside the domain of kinematic constraint corre-
sponding to each momentum K;. Coefficients y;, correspond-
ing to SC state, should be determined by one of the
irreducible representations of the symmetry group C4. A
choice of the irreducible representation establishes the orbital
symmetry of the order parameter. Since y;=—7y,=y3=—7v, in
the case of d-wave orbital symmetry, a checkerboard spatial
pattern of the order parameter follows from Eq. (14) imme-
diately. One can see that d-wave order parameter, Eq. (14),
corresponds to a currentless SC state, therefore, in this re-
spect, it is similar to Larkin-Ovchinnikov immobile wave
solution,' in contrast to Fulde-Ferrell running wave,'® of the
FFLO problem.

Nonzero anomalous average <éK//2—k \Ck j2+k1) Appears as a
result of averaging of the product of two annihilation fer-
mion operators over the canonical ensemble in which total
particle number N fluctuate with respect to certain mean

value N.!6 Tn such an ensemble, all of the states with differ-

ent N close to N should be coherent so that pair correlation
function Eq. (14) describes ODLRO of K pairs in the SC
condensate. Above T, phase coherence of the ground state
turns out to be lost due to the fact that K pairs in the states
with different N have got random center-of-mass phases.
Owing to the above-mentioned instability of the ground state
with respect to a rise of QSS of K pair, relative motion phase
of the wave function of such a pair, included into coefficients
7;» can remain locked up to temperatures far above 7.

One can think that a loss of relative-motion phase coher-
ence with heating might go through two steps. At first,
d-wave currentless superposition, Eq. (14), can be decom-
posed into two orthogonal dimer superpositions with
V1= %, 2=%=0 and y,=* vy, y;=y;=0. After that, at
greater temperature, dimer state can be disintegrated into free
K pairs which survives up to their break at a temperature that
can be associated with the upper boundary of the PG state.
Temperature range, corresponding to lost center-of-mass
phase coherence but survived relative-motion phase coher-
ence, can be referred to the region of the PG state in which
off-condensate SC pairs can appear as spatially inhomoge-
neous ODSRO. We believe that spatial pattern, like that ob-
served by Kohsaka et al.,? is described by currentless super-
positions Eq. (14) in which coefficients 7y; correspond to
random dimer configurations.
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FIG. 5. Angle dependence of the spectral weight (schemati-
cally). (a) Spectral weight of the coherent SC peak [dashed lines 1
and 2 correspond to d-wave order parameter (~cos2¢) and
K-pairing order parameter, respectively]. (b) Antinodal spectral
weight of the PG state. Here, ¢, is a conditional angle boundary
separating the nodal and antinodal regions.

Recently, Berg et al.?’” have considered dimerlike (striped)
ODLRO in the framework of the concept of SC pairing with
large momentum. Note that, as follows from numerical study
of Hubbard model on 4 X 4 square lattice,?® d-wave checker-
board order as the ground state seems to be favorable with
respect to dimerlike one.

Momentum dependence of ODLRO parameter Ago(k) de-
termines the angle dependence of the spectral weight,
Wep(), of the SC coherent peak appearing in the ARPES
spectra below T... In the case of d-wave superconductor, it is
tacitly assumed that SC order parameter, taken on the FC, is
proportional to cos 2¢, where Fermi angle ¢ is polar angle
in the momentum space counted from the antinodal direc-
tion. Therefore, Wp(¢) should be a monotone function in
the angle range 0 = ¢p= 7/4 between the antinodal and nodal
directions. However, the ARPES study® shows unambigu-
ously that the SC spectral weight turns out to be highly non-
monotonic: at first, Wep(¢h) increases from zero at ¢p=1/4
up to a maximum at certain ¢,, and then exhibits a consid-
erable decrease if ¢— 0. The spectral weight in the antinodal
region is strongly dependent on doping. Such a nonmono-
tonic behavior of Wp(¢) is explained® by a competition
between superconductivity and an insulating state develop-
ing in the antinodal region with pronounced nesting feature
of the FC. The insulating state should result in a depletion of
the SC pairing channel and, in consequence of a decrease in
the SC order parameter, in a lowering of the spectral weight
of the SC coherent peak. It should be noted that the spectral
weight in the antinodal region, observed by Kondo et al.,? is
considerably greater than that corresponding to simple
cos 2¢ dependence as shown schematically in Fig. 5(a).

The coherent peak disappears in the PG state above T.
where spectral weight Wpg(¢) is zero in a broad angle range
that can be referred to the nodal region [Fig. 5(b)]. In the
antinodal region, Wpg(¢) increases rapidly up to a maximum
when ¢— 0. Insulating order, which might be invoked to
explain both Wep(¢) and Wpg(¢h), is not discovered for now.
We believe that a competition of such a hidden order?® with
superconductivity is not the only qualitative explanation of
observed spectral properties in the antinodal region. We have
shown that K-pairing concept® leads to a consistent explana-
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tion of the origin of the SC and PG states: K pairing in the
antinodal region gives rise to both these states. A decrease in
Wep(d) at ¢— 0 can be associated with nontrivial zero lines
of the SC order parameter Agc(k) shown in Fig. 3, that is,
can be explained in just the same way as a decrease in
Wep(d) at ¢p— /4 due to d-wave node. It is evident that
such angle dependence of the spectral weight of the coherent
peak, appearing in both nodal and antinodal regions owing to
different microscopic mechanisms of SC pairing, can be con-
sidered as a direct indication of the biordered SC state. On
the contrary, since the PG state is associated with QSS wave
function, one can expect that Wpg(¢)=0 in the nodal region
whereas nonzero Wpg(¢) in the antinodal one is compared
with Wep(¢) that appears there below T.. Due to a random
phase of the wave function of QSS and corresponding gap
function Apg(k), nodal lines of these functions, that could be
apparent in the antinodal region, cannot give a detectable
contribution into a decrease in the spectral weight at ¢—0.
Expected angle dependencies of Wep(¢p) and Wpg(¢) are
shown schematically in Fig. 5.

We believe the antinodal region with pronounced nesting
of the FC gives rise to K pairing whereas conventional pair-
ing with K=0 develops in the nodal region where the FC
shows no signs of nesting. Thus, we do not oppose K pairing
with the conventional pairing: these two SC pairing channels
with slightly overlapped domains of definition in the mo-
mentum space form indivisible biordered SC state together.
A passage from the antinodal region into the nodal one is
accompanied with a redistribution of the spectral weight be-
tween these two pairing channels.

IV. QUASIPARTICLE INTERFERENCE

A rise of the coherence in the system of the antinodal K
pairs below T, should inevitably lead to interference effects
inherent in the SC state. Bogoliubov QPI appears due to
mixing of quasipatricle states with high spectral weight that
results in a modulation of the local density of states (LDOS)
in the real space. Such states, at given quasiparticle energy,
Eq. (4), are disposed in vicinities of the points corresponding
to maximal curvature of the isoline E(k,,k,)=E=const. In
the case of biordered SC state, pairing with zero total mo-
mentum dominates K pairing in the nodal region, therefore,
77(k) =0 in this region due to the fact that e(—k)=¢&(k). Thus,
quasiparticle spectrum in the nodal region turns out to be
fully symmetrical with respect to the Fermi level.

On the contrary, K pairing dominates the pairing with zero
momentum in the antinodal region including near rectilinear
segments of the isolines in relatively small vicinity of the FC
which primarily forms the singularity in the self-consistency
equation. Because &(K/2+k)=~g&(K/2-k) in this vicinity,
quasiparticle spectrum in the antinodal region should be
slightly asymmetrical with respect to the Fermi level. Due to
the fact that there is a considerable increase in the deviation
from mirror nesting in a vicinity of conditional boundary
separating nodal and antinodal regions, one can expect a pro-
nounced increase in the asymmetry of quasiparticle spectrum
in this vicinity. Such a statement is compatible with photo-
emission data presented by Yang er al.’® Also, it shows that
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an insulating state, competing with the SC one, cannot be
considered as the only origin of the asymmetry observed by
Yang et al.’® Indeed, quasiparticle spectrum in the case of
insulating state with gap function D(P) has the form

Eo(p) = &p) £ \(p) + D(p)’, (16)
where 2&(p)=e(p)+e(p+Q) and 27(p)=c(p)-c(p+Q).

Therefore, imperfect nesting, that is a deviation from the
nesting condition (12), just as imperfect mirror nesting, re-
sults in the term [&(p) or 7(p) before the square root] that
originates electron-hole asymmetry in both cases.

To study antinodal quasiparticle spectrum qualitatively,
one can neglect 7(k) in Eq. (16) owing to the fact that anti-
nodal segments of the FC appear as near rectilinear. For this
reason, at low quasiparticle energies, isoline shape can be
analyzed in general form. In such a case, isolines enclose the
gapless points of intersection of the FC and the nodal line.
These singular points can be found from equation system
Exlky,ky)=0 and Ag(k,,k,)=0.

The nodal part of the FC can be approximated by an arc
of a circle whereas the nodal lines of d-wave superconductor
are straight lines k,= * k,. As a result, the quasiparticle iso-
lines become apparent as “bananalike” closed curves.’! Be-
cause Fermi energy e exceeds d-wave SC gap magnitude
A, considerably, ;> A,,, “banana” turns out to be very thin
so that exactly its end points correspond to maximal curva-
ture of the isoline. This directly leads to the octet model of
QPI in the nodal region,?' which defines a set of wave vec-
tors k; (1 =i=8), corresponding to such end points, that de-
termine LDOS pattern at given quasiparticle energy E. The
octet model is presented in Fig. 5(a) where we define the
main scattering momenta as ¢q;=k;—k;. It should be noted
that our definition of ¢; is somewhat different from that given
by Kohsaka et al.?> These two definitions are mutually
complementary in the reciprocal lattice.

As one can see from Fig. 3, singular points of antinodal
quasiparticle spectrum E(k) are symmetrically, with respect
to the antinodal directions, disposed on near nested pieces of
the FC. To study a shape of the isolines, one can approximate
these pieces by straight lines and any of the nodal lines in a
small vicinity of the singular point by an arc of a circle.
Evidently, under the condition that > A, all isolines in
this vicinity are bananas enveloping a rectilinear part of the
FC. Indeed, if E<<gp, an isoline of the quasiparticle disper-
sion can be written in the form

Kz—K%=—K3iaVK}25—K§, (17)
where k,=k,/kr and k,=k,/kyr are dimensionless compo-
nents of the relative motion Vmomentum, kg is the Fermi mo-
mentum in the antinodal direction, k is dimensionless radius
of the nodal line, kz=FE/2¢&p, a=2¢er/A,,(kpa)?. As follows
from Eq. (17), there are closed isolines only under condition
that —kp= k,= kg. Therefore, a transversal, with respect
to the FC, size of the isoline equals «,=2kp<l. If
E—0, closed isolines shrink into two singular points
(£kp,0). A longitudinal size can be estimated as
K= V"K(z)+aKE— \"/K(z)—aKE, therefore, closed isolines appear
in quasiparticle energy range 0<E=A,,(kya)’. In addition,
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FIG. 6. Main scattering momenta determining (a) nodal, in ac-
cordance with the “octet” model (Ref. 2) and (b) antinodal QPI
pattern. FC and nodal line of the gap function are presented as solid
and dashed lines, respectively. Small bananas are showed as shad-
owed ovals. Antinodal sectors of the Brillouin zone are shadowed.
Integers present the subscript enumerating main scattering mo-
menta.

one can examine that «,<k; Energy E, =A,,(kya)’ corre-
sponds to a topological transition from closed, at E<E,,, to
opened, at E>E,,, isolines. Because opened isoline has no
points of considerable curvature, the topological transition
should result in a degradation of the interference pattern.
Contrariwise, due to a large curvature of the closed isoline in
small vicinities of its end points, exactly these vicinities
should primarily contribute into the QPI. Therefore, follow-
ing McElroy et al.,’' one can introduce a set of momenta
q:(E) connecting different end points. Here, subscript i runs
from 1 to 2n—1 where n is the number of singular points of
quasiparticle dispersion, Eq. (16). Such main scattering mo-
menta, defined as ¢;=k;—k; for any i # 1, should determine
the real-space interference pattern. The pattern caused by the
antinodal QPI turns out to be considerably more complicated
in comparison with the nodal one even in the simplest case
corresponding to the only closed nodal line in each of four
crystal equivalent parts of the antinodal region as shown in
Fig. 6(b). The full set of momenta ¢;, following from non-
trivial momentum dependence of the gap function shown in
Fig. 3, should result in the real-space antinodal QPI pattern
that can be considered as originating from fairly uniform
distribution of scattering momenta. Therefore, it seems
highly probable that the antinodal QPI pattern should be con-
siderably more smooth with respect to the nodal one.
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It is clear that due to expansion of the closed isolines
E(k)=E with an increase in E, there is a variation (rotation
and decrease or increase in the absolute value) of the main
scattering momenta, ¢;,=¢,(E) with E. All of the nodal scat-
tering momenta are dispersive, varying with E in accordance
with the octet model.2 On the contrary, among the antinodal
scattering momenta, there are some nondispersive, such as
“immobile” g5 and ¢, shown in Fig. 6(b), that, owing to
nesting feature of the FC, remain independent of E at small
quasiparticle energies. Strictly speaking, only such immobile
¢, can contribute into checkerboard real-space modulation in
the SC state.??

Nodes of the antinodal quasiparticle spectrum result in the
fact that, at a finite temperature, thermal equilibrium quasi-
particles are excited not only near d-wave nodes in the nodal
region®? but in the antinodal one as well. Moreover, the equi-
librium population of the antinodal quasiparticles may con-
siderably exceed their population in vicinities of the d-wave
nodes. This may occur if line of zeroes of the antinodal gap
function, in contrast to the nodal one, turns out to be close to
the FC in its extended vicinity.

V. CONCLUSION

Our concept of K pairing in the cuprates is based on two
complementary statements: 1° screened Coulomb repulsion
is the underlying SC pairing interaction; 2° large momentum
of K pair arises due to nesting feature of the FC. SC K
pairing, prevailing in the antinodal region of the momentum
space, leads directly to uniform explanation of spatial inho-
mogeneity of both SC state in the form of checkerboard
PDW and striped PG state formed by incoherent K pairs. K
pairing, together with the conventional SC pairing with zero
momentum prevailing in the nodal region, results in an indi-
visible biordered SC state which naturally explains the pecu-
liarities of the angle dependence of the spectral weight both
below and above T.. Complicated momentum dependence of
the gap function in the antinodal region should lead to fairly
reach antinodal QPI resulting in relatively smooth real-space
interference pattern.
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